I Hate Dialysis Message Board
Dialysis Discussion => Dialysis: News Articles => Topic started by: okarol on May 14, 2007, 10:42:34 PM
-
"Viral Sponge" Cleans Blood, Removes Bird Flu
Posted on May 14, 2007 08:22 AM
www.medgadget.com
Peter Kofinas, professor of bioengineering at the University of Maryland's A. James Clark School of Engineering, is using a new technology to develop a "sponge" that could filter everything from viruses to drugs to excess sugar from blood, in a fashion similar to dialysis.
The virus sponge is based on a technology called molecular imprinting. In molecular imprinting, researchers stamp a molecule's shape into a substance (in this case, a hydrogel--a sponge-like material). When the specific molecule filters through the hydrogel, it fits in the imprint hole and is trapped.
The research group of Peter Kofinas, a professor in the Clark School's Fischell Department of Bioengineering, is the first to apply molecular imprinting to the capture of viruses, and to show that this approach is possible using an inexpensive hydrogel.
"This new technology could be integrated into hospitals and healthcare centers at minimal cost," according to Kofinas. Modifying existing dialysis machines to include the virus sponge technology would be relatively simple, he said.
"This virus removal device can be used the same way as a kidney dialysis machine," Kofinas continued. "If you have a viral infection, you can go to the hospital and have your blood cleaned of that virus."
While a new vaccine must be developed each year for the strain of influenza that is expected to be the most potent, a hydrogel can be imprinted as a universal filter for all flu strains. However, to achieve better performance, a hydrogel filter can also be produced to catch a particular strain of the virus.
The molecular imprinting process has many applications beyond trapping viruses.
"Applying the technology to a drug or food additive could contribute to the dietary freedom of those who suffer from type II diabetes," Kofinas said.
A pill containing the hydrogels could be developed to remove excess sugars when taken with food, thus helping diabetics regulate their diet, Kofinas explained. The hydrogels would work within the small intestine to remove glucose prior to absorption into the blood stream.
Drug manufacturers could use the hydrogel filters in vaccine production. Pharmaceutical companies use viruses to create the vaccines that fight them. Hydrogels could be used to strip the virus out of the finished medication—a process that is currently very time-consuming and expensive.
Another potential application is to use the material as a filter in masks for those needing protection in case of biological warfare or other harmful biological agent exposure.