I Hate Dialysis Message Board
Welcome, Guest. Please login or register.
October 04, 2024, 10:28:21 PM

Login with username, password and session length
Search:     Advanced search
532606 Posts in 33561 Topics by 12678 Members
Latest Member: astrobridge
* Home Help Search Login Register
+  I Hate Dialysis Message Board
|-+  Dialysis Discussion
| |-+  Dialysis: News Articles
| | |-+  Improving Dialysis Membranes
0 Members and 1 Guest are viewing this topic. « previous next »
Pages: [1] Go Down Print
Author Topic: Improving Dialysis Membranes  (Read 1602 times)
okarol
Administrator
Member for Life
*****
Offline Offline

Gender: Female
Posts: 100933


Photo is Jenna - after Disneyland - 1988

WWW
« on: August 21, 2007, 01:25:02 PM »


August 20, 2007

ACS Meeting News
Improving Dialysis Membranes

Nanoporous alumina membrane mimics human kidneys better than current technology
Carmen Drahl

A new type of dialysis membrane made from nanoporous alumina may better approximate human kidneys’ ability to remove waste products from the bloodstream than the technology currently in use. Chemists Mark Schneider and Loyd Bastin of Widener University, in Chester, Pa., described the new membrane this week in the Division of Biological Chemistry at the American Chemical Society’s national meeting in Boston.


Dialysis membranes clear toxins such as urea from the blood and preserve water balance and serum protein levels in blood, all while leaving red and white blood cells intact. Aluminum oxide is a well-known nanostructured material, but it represents a complete departure from materials that traditionally make up membranes, such as cellulose and polysulfone. Alumina offers the advantage of easily controllable pore sizes and has a more regular pore pattern than polysulfone. The material’s pore properties could better maintain consistent blood flow through the dialyzer.

In Boston, Schneider and Bastin reported that an alumina dialysis membrane developed by Widener mechanical engineer Zhongping Huang has passed all of their initial biocompatibility tests.

Huang designed the thin-walled alumina membrane and previously demonstrated that it mechanically outperforms its predecessors (J. Med. Devices 2007, 1, 79). For example, the alumina membrane can handle double the flow rate of a polysulfone membrane, due in part to its regular pore structure. And alumina’s higher melting point renders the membrane more resistant to the heat used in sterilization procedures.

To test whether the alumina membrane could function in dialysis procedures, Schneider, Bastin, and Huang flowed bovine blood through the membrane for three hours—roughly the length of a typical dialysis session. Atomic absorption spectroscopy detected no aluminum leaching from the membrane into the blood and dialysate; leaching could pose a hazard to a patient. In addition, the total free hemoglobin protein content in the blood was constant during dialysis, indicating that red blood cells remained intact upon passage through the membrane. Serum protein levels also were consistent during dialysis.

The team plans to follow up the current work by assaying specific proteins that are abundant in blood, such as lactate dehydrogenase, to confirm that protein structure and function is conserved during alumina-membrane-mediated dialysis.
Logged


Admin for IHateDialysis 2008 - 2014, retired.
Jenna is our daughter, bad bladder damaged her kidneys.
Was on in-center hemodialysis 2003-2007.
7 yr transplant lost due to rejection.
She did PD Sept. 2013 - July 2017
Found a swap living donor using social media, friends, family.
New kidney in a paired donation swap July 26, 2017.
Her story ---> https://www.facebook.com/WantedKidneyDonor
Please watch her video: http://youtu.be/D9ZuVJ_s80Y
Living Donors Rock! http://www.livingdonorsonline.org -
News video: http://www.youtube.com/watch?v=J-7KvgQDWpU
Danally
Jr. Member
**
Offline Offline

Posts: 50

« Reply #1 on: August 21, 2007, 02:28:38 PM »

When will this be available?
Logged
Pages: [1] Go Up Print 
« previous next »
 

Powered by MySQL Powered by PHP SMF 2.0.17 | SMF © 2019, Simple Machines | Terms and Policies Valid XHTML 1.0! Valid CSS!